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Inductance and Quality-Factor Evaluation of Planar
Lumped Inductors in a Multilayer Configuration

Samir F. Mahmoud and Eric Beyne

Abstract—Integral representations for the self and mutual in-
ductance of planar loops on a multilayered structure are derived.
The integrals are of the Sommerfeld type and can be easily
evaluated under the quasi-static approximation which is validated
by the small dimensions relative to a wavelength. Enhancement of
loop inductance by inclusion of a magnetic layer is investigated.
It is shown that such a layer can increase the inductance by a
percentage which has the upper limit of[(�r�1)=(�r+1)]�100%,
where�r�r�r is the relative permeability of the layer. A study is also
made on the inductor quality factor (QQQ) as affected by losses
caused by finite electrical conductivity of the magnetic layer and
the underlying substrate.

I. INTRODUCTION

I T IS WELL KNOWN that lumped elements in microwave
planar circuits can potentially reduce a circuit’s physical

size. Several lumped inductor and capacitor configurations
have been proposed and utilized in active and passive circuit
designs [1]–[6]. Although simple formulas have been proposed
for analysis and design of these elements (e.g. [7]–[9]), exact
prediction of inductance or capacitance of lumped elements on
a multilayer structure still poses challenging problems if the
effect of the underlying structure is to be fully accounted for.

Simple formulas have been provided by Greenhouse [7],
based on earlier work of Grover [8] and Terman [9], to
compute the self-inductance of a straight strip in terms of
its width and thickness, and the mutual inductance between
two straight parallel strips separated by a given spacing. Other
formulas have been presented more recently by Pettenpaulet
al. [10] who consider both rectangular, as well as circular,
multiturn coils. It is worth noting that the inductance formulas
presented in the above papers do not account for reflections
from the multilayer structure underneath, except for the ground
plane. This may be acceptable if there is no magnetic layer
involved. Such a layer will have appreciable effect on the
value of inductance. In this paper, a method is presented
for deriving self-inductances of printed coils or rings taking
full account of the multilayers beneath them. This method is
based on expanding the electromagnetic field due to the ring
current into a spectrum of plane waves, which are reflected and
transmitted at the lower multilayer structure. An integral form
of the Sommerfeld type is thus derived for the flux linkage
with the ring and, therefore, the self-inductance of the ring.
As a special case, the effect of a magnetic slab of a given
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thickness within the multilayer structure on the ring inductance
is studied. One can also find the effect of losses due to the
layers’ conductivities on the measured ring resistance or the
ring quality factor ( ). A similar method had been presented
earlier by Wait and Spies [11], to derive the input impedance
of a loop above a lossy earth.

II. DERIVATION OF PRIMARY INDUCTANCE

First consider a ring strip with a mean radiusand width
, where , lying in the plane , as demonstrated by

Fig. 1(a). It is required to derive the self-inductance of the ring
strip in free space. Consider next the case where the ring is
situated on the top of a layered horizontally stratified medium
as depicted in Fig. 1(b).

Referring to Fig. 1(a), adopt a cylindrical coordinate system
and assume an electric surface current densityA/m

flowing in the direction and harmonically varying with
time as and being the radian frequency. For a

independent current, can be expressed by

otherwise
(1)

where is the total current (ampere) and is the radial
current distribution such that over the ring.
Strictly speaking, should be obtained from the solution
of a boundary value problem requiring the vanishing of the
tangential electric field to the ring’s surface. An acceptable
solution for on a strip line has been found [12] to be

(1a)

which takes into account the edge effect. This form of current
distribution shall be adopted in what follows. As a step
toward derivation of the electromagnetic fields produced by
this current, is recast into a continuous spectrum of
cylindrical waves as

(2)

where is the first-order Bessel function. Equating (1) and
(2), and using the Bessel transform relation, one gets

(3a)

(3b)
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(a)

(b)

Fig. 1. Problem geometry. (a) Single planar ring in the planez = 0, mean
radiusa, and widthw. (b) Inductor ring on a multilayer structure.

Since in the above integral, the
ratio of the Bessel functions inside the integrand can be
approximated by using the large argument approximation for
these functions leading to .
This approximation turns out to be a very good one for
in the order of or greater, which covers the significant
range of as will be further discussed below. Performing the
integration in (3b), one gets

(3c)

The electromagnetic fields associated with the current can
be expressed in terms of a-oriented vector electric potential
[13], which satisfies the wave equation in air and, therefore,
is given by

(4)

where

and

Noting that the magnetic field component
from Ampere’s law, (2), (3c), (4), and the relation

are used to find and, therefore, is
now rewritten in terms of the current as

(5)

The vertical magnetic field is obtained from
through a well-known relation [13] leading to

(6)

Now, one is in a position to derive the magnetic flux linkage
with the ring from which the primary inductance is obtained
in free space; namely

(7)

Fig. 2. Normalized inductance of a single ring inductor in free space versus
w = w=2a, as obtained by (9). Comparison with results based on [10] is
shown by dots. The stars give the closed form term(1� w)=�

p
w.

where the identity [14]

has been utilized. Formula (7) is an integral expression for the
ring self-inductance. It may be re-expressed in dimensionless
quantities by using the substitution and ,
leading to

(8)

It is noticed that the square-root term will be imaginary in
the range , thus rendering complex. The imaginary
part of accounts for the radiation resistance of the ring.
When the ring radius is much less than the free-space wave-
length, i.e., , which is usually the case of interest,
this resistance is negligible. Furthermore, one can neglect
relative to since the bulk of the integral in (8) comes from
the range of . Therefore, (8) can be rewritten in the form

(9)

Obviously (9) can be obtained by using the quasi-static
approximation right from the outset, on account of the small
ring dimensions relative to a wavelength. For instance, a ring
of mean radius m is one hundredth of a wavelength
at 12 GHz, which validates a quasi-static approach.

It should be noted that as tends to zero in (9), the integral
will diverge, indicating that as expected, the inductance of a
zero-thickness ring is infinite. For the purpose of computing

in (9), the integral is recast into a closed-form term
plus a correction term; the details of which are given in the
Appendix-A. Thus

(9a)

where is an asymptotic form of as given in the
Appendix-A.

Numerical values of for a single loop, as given
by (9), is plotted versus in Fig. 2, a solid curve and
comparison is made with results computed from a formula in
[10, eq. (10)]. Good agreement is found between this paper’s
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Fig. 3. Normalized mutual inductance between two rings of mean radiia; b

in free space(t=a = 0) versusb=a as given by (8), and in the presence of
a magnetic slab of thicknesst.

approach and that in [10]. It is worth mentioning that the
closed-form term on the right-hand side (RHS) of (9a) can
stand alone as a rough approximation with less than 10%
error in the narrow range , as shown by stars in
Fig. 2. The integral term in (9a) changes its sign from negative
to positive as increases and passes by0.08.

The same formulation given above can be adapted to obtain
the mutual inductance between two concentric rings of
mean radii and with, say, . With and ,
it can now be assumed that the ring currents are concentrated
at the mean radii of the rings. Therefore, (1)–(9) applies with
the exceptions that is set equal to zero and the integration
limits in (7) change to become from zero to. Thus
is given by

(10)

Fortunately, this integral has a standard form [14, Ch. 11]
and, hence, a closed form for is

(11)

where is the hypergeometric function defined in
[14, Ch. 15]. Numerical values of the left-hand side (LHS) of
(11) versus are shown by the curve labeled 0 in Fig 3.
It is worth noting that can also be expressed in terms
of the complete elliptic functions [15] as

(11a)

where and are the complete elliptic integrals as
defined in [14, ch. 17].

III. EFFECT OF THEMULTILAYER STRUCTURE

A ring is now considered, which is situated on the top of
a layered planar structure consisting of an insulating layer
over a magnetic slab on a metal-packed substrate as depicted
in Fig. 1(b). The cylindrical wave expansion of the primary
vector potential in (5) allows the inclusion of reflections
from the planar structure in a straightforward manner. Namely,
assuming to be the Fresnel reflection coefficient of the
cylindrical wavelet incident on the planar

structure, in the presence of the lower half space
becomes

(12)

Following the same steps leading to (9), one gets the ring
inductance in the presence of the planar structure as

(13)

where as before. is derived in the Appendix
using a transmission-line analogy in the vertical direction.
It is shown that this is also a function of the bulk com-
plex wavenumbers , , in the insulator, the magnetic
layer, and the substrate, respectively. If all wavenumbers are
neglected relative to the transverse wavenumber, one is
effectively using a quasi-static analysis, which leads to real
values for the inductance. This is justifiable in view of the
small relevant dimensions in relation to a wavelength and,
therefore, the quasi-static approximation is accurate enough
for computing the inductance. Under this approximation, the
conduction and displacement currents in the layers are totally
neglected and the only important material parameter is the
relative permeability of the magnetic layer. However, if one
is interested in accounting for losses in the layered medium,
then a full-wave analysis has to be pursued, i.e., conduction
and displacement currents in the layers should be taken into
account. Such losses are made of power loss due to the layers’
conductivities and trapped surface waves traveling sideways
within the layers.

Computation of in (13) is performed by dividing the
integration into a primary inductance plus a secondary
inductance ; the latter accounts for . The integration
for can be evaluated numerically since includes an
exponentially decaying factor that assures fast convergence of
the integral (see Appendix-B).

IV. NUMERICAL EXAMPLES

A. Grounded Substrate Under an Insulating Layer

First the multilayer structure is considered to consist of an
insulating layer of thickness above a grounded substrate
of thickness . Under the quasi-static approximation, the
insulating and the substrate layers appear transparent and
the inductance is only affected by the ground plane. In this
case, the Fresnel reflection coefficient is simply

, where and are the insulator and
the substrate thicknesses. The ratio is plotted versus

; being the mean coil radius in Fig. 4. It is shown
that is small, unless the ground plane is too close to
the coil in relation to its radius. If the substrate losses caused
by finite substrate conductivity are to be accounted for, one
should abandon the quasi-static approximation and use the
exact formula (A6) along with (A8) for . For a silicon
substrate, the relative permittivity is taken to equal 11.7 and
the loss tangent is considered as a variable. Formula
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Fig. 4. The ratio�Ls=Lp;Ls is caused by a grounded substrate of thick-
nessd under an insulating layer of thicknessh, versus(d + h)=a; a being
the ring mean radius. Quasi-static approximation is used.

Fig. 5. The ring inductorQ due to substrate losses versus substrate loss
tangent(tan �s). Relative permittivity of substrate= 11.7 and the frequency
is such thatkoa = :0942.

(13) will now render complex values for, the interpretation
of which is that the imaginary part times is the part of the
coil resistance as contributed by the substrate losses. A,

, may be defined as the real part to the imaginary
part of . This is plotted versus in Fig. 5. The high
values of shown signify low substrate losses and, therefore,
the overall of the coil is not greatly affected by these losses.
The latter is determined by all the losses, including the ohmic
resistance of the ring, which is dominant. A full account of
the ohmic resistance of printed conductors is found in [10].

B. A Multilayer Structure Containing a Magnetic Layer

Next, the effect of inclusion of a magnetic layer as depicted
in Fig. 1(b) is studied. Under the quasi-static approximation,
the electric conduction and displacement currents are neglected
everywhere, so the reflection coefficient becomes a function
of only , ; the relative permeability of the magnetic slab
and the geometrical dimensions as given by (A6) and (A7).
Notably, in the limit , [see (A10)]

(14)

where . In order to obtain an upper limit for
due to the presence of the magnetic layer, a hypothetical
situation is considered in which this layer extends to fill
the lower half space; i.e., . In this case, is
given exactly by (14). Therefore, the percentage is

Fig. 6. The ratioLs=Lp% of a single ring due to a magnetic half space at
a depthh below the ring.�r = 12.

Fig. 7. The ratioLs=Lp of a single ring on the multilayer structure of
Fig. 1(b) versus the magnetic layer thickness withh=a as a parameter.
�r = 12:

bounded by , which occurs at
. Computation of that percentage as a function of is

performed, with the results plotted in Fig. 6. It is seen that the
drops monotonically with increased ; hence, the

upper bound of the percentage increase of inductance due to
a magnetic slab is a sensitive function of the insulating layer
thickness. The effect of thickness of the magnetic slab is now
studied by plotting versus , with taken as a
parameter in Fig. 7. As expected, as increases, the
approaches its upper bound given in Fig. 6 for a given.

The mutual inductance between two coaxial rings of mean
radii and is also increased with the magnetic slab thickness.
This is shown numerically in Fig. 3, in which is
plotted, versus with taken as a parameter and fixed

and .
Finally, the conduction currents in the magnetic slab and

substrate are accounted for by plotting the single ring
(due to multilayer losses) versus frequency in gigahertz for
typical dimensions where m and other dimensions
given in the Fig. 8 caption. The magnetic layer conductivity

and are taken as parameters. Here is defined as
the real part of to the imaginary part of as caused by
the magnetic slab and substrate conductivities. It is seen that

increases inversely with and is reduced with higher
frequency and higher conductivity. This is so because as these
two parameters increase, the magnetic slab thickness becomes
a higher fraction of the skin depth. For instance, for
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Fig. 8. The ring Q Qms due to losses in the
magnetic layer and substrate versus frequency.
a = 25�m; t=a = 0:1; d=a = 1:2; "s = 11:7"o; �substrate = 0:2 mho/m,
�r = 12. Curve (a):�m = 1 mho/m,h=a = 0:02, curve (b):�m = 1

mho/h,h=a = 0:1, and curve (c):�m = 5 mho/m,h=a = 0:02.

mho/m, and for , , the skin depth
mm and at 6 GHz and
at 18 GHz.

V. CONCLUSION

Integral Sommerfeld-type forms have been derived for the
self and mutual inductances of planar rings on a multilayer
structure with full account of reflections from, and trans-
mission into, the multilayer medium. For ring dimensions
which are very small, relative to the operating wavelength, a
quasi-static approach renders accurate values of inductances.
However, a full-wave analysis is needed if the substrate
and/or the magnetic layer losses and their effect on the
are to be accounted for. The introduction of a magnetic
layer within the multilayer structure is shown to cause an
increase of inductance—the upper limit of which is given by

, but the actual increase is a function
of the insulator thickness and the magnetic-layer thickness
, relative to the mean ring radius. Ohmic losses in the

magnetic layer remain small as long as the thickness is much
less than a skin depth in the magnetic layer medium.

APPENDIX

A. Evaluation of (9)

Integration (9) can be recast into the following form:

(A1)

where and is an asymptotic form
of valid for

(A2)

where the first term in the asymptotic expressions for each of
and have been used.

It turns out that the integration of in (A1) can be
obtained in closed form as

(A3)

where the following identities have been used [14, eq.
(11.4.35), (11.4.36)]:

for

for

The other integral on the RHS of (A1) can be obtained
numerically since the integrand approaches zero at sufficiently
large .

B. Fresnel Reflection Coefficient

Under the quasi-static approximation, the bulk wavenum-
bers in each layer are neglected, relative to the transverse
wavenumber . Hence, waves vary as in each
layer. The transverse impedance in each layer (considered as
a transmission line along) is being equal to ,
except inside the magnetic layer where . With a
perfectly conducting ground, the Fresnel reflection coefficient
as seen at the top of the multilayer medium is

(A6)

(A7)

with .
Next, if the wavenumbers in the substrate and the magnetic

layer are not neglected, the transverse impedances in these
layers become and , respectively, where

The Fresnel reflection coefficient is given by (A6) with

where

and (A8)

Note that as

(A9)

Hence,

(A10)
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